COORDINATE TRANSFORMATIONS

UNIVERSAL TRANSVERSE MERCATOR/GEOGRAPHIC

by KEVIN M. KELLY

Ontario Ministry of Natural Resources

BY EEYIN M. KEDLY,
ORTARIO MINISTRI OF NATURAL RESOURCES

PREFACE

I have been requested on numerous occassions to provide algorithms for performing geographic to UTM and vice versa coordinate transformations. Many of these requests have come from surveyors and engineers. While there exists a multitude of software packages that can readily handle these copmutations, it seems that many individuals are acquiring their own micro-computers or sophisticated desk-top calculators and as a result are desiring to generate their own programs for these computations.

In the past I have had to sift through numerous references to complie these formulas each time I recieved a request. I can now appreciate why these individuals called me rather than compiling this information themselves -- there are as many different sets of algorithms to perform these basic coordinate transformations as there are sources in which to find them. Unfortunately, the computations are not trivial and the problem of which algorithms to use can be confusing.

I have found the formulae outlined in reference [1], with some formulation from references [2] and [3] the simplest for the accuracies required in many applications today and these will be presented here. Less complez formulation does exist for these transformations, however, they usually do not provide the accuracy and stability of the algorithms presented here.

I hope this paper will be useful to a broad spectrum of individuals who at one time or another find the need to perform these very popular coordinate transformations.

Abstract

A simple to use set of algorithms for transforming geographic coordinates into Universal Transverse Mercator (UTM) coordinates and vice versa is presented. The formulation is based on series expansions in terms of the geodetic quantities η and t and are accurate to 1 mm at ± 3 degrees from the central meridian. Numerical examples showing both final and intermediate results are also included. The alogrithms are outlined for use in the northern hemisphere based on the Clarke 1866 ellipsoid as the reference ellipsoid. However, with very minor modifications these formulas could be used in the southern hemisphere or in conjunction with another reference ellipsoid.

IMTRODUCTION

adopted in 1974 by the Ontario Ministry of Natural Resources as the official standard geographical referencing grid for the Province. It is called the "Ontario Geographical Referencing Grid".

The UTM is the ellipsoidal Transverse Mercator (TM) to which specific parameters, such as central meridians, have been applied. Ontario, up to latitude $80^{\circ} \mathrm{N}$. is divided into 4 zones each 6 degrees wide in longitude. Thus, Toronto is in grid zone 17 with central meridian $81^{\circ} \mathrm{W}$. longitude. Figure 1 illustrates the UTM zones covering Ontario.

Each geographic location in the UTM projection is given x and y coordinates, in metres, usually termed easting and northing respectively. The meridian halfway between the zones' bounding meridians is termed the central meridian (CM) and its scale is reduced to 0.9996 of true scale. This reduction was choosen to minimize scale variation in a given zone. If the geodetic ellipsoid of reference is known, then the UTM zone number and the (X, Y) coordinates (i.e., easting and northing) are sufficient to define any point.

The ellipsoidal Earth is used throughout the UTM projection system, but the reference ellipsoid may be subject to change. At present, for all land under Ontarios jurisdiction, the Clarke 1866 ellipsoid is used for the map projection. However, the forthcomming Redfinition and Readjustment of North American Geodetic Horizontal Control Networks (NAD83), once adopted in Ontario, will change this ellipsoid. Until such official announcement is made, however, the Clarke 1866 ellipsoid is the reference ellipsold for the UTM projection system in Ontario.

MOTATION AND CEODETIC CONSTANTS

The following notation and geodetic constatnts are used in this paper:
$a=s e m i-m a j o r ~ a x i s ~ o f ~ t h e ~ r e f e r e n c e ~ e l l i p s o i d . ~$

$$
\begin{aligned}
e^{2} & =\left(a^{2}-b^{2}\right) / a^{2}=\text { (eccentricity) } . \\
e^{\prime 2} & =\left(a^{2}-b^{2}\right) / b^{2}=\text { (second eccentricity) } \\
\phi & =\text { geographic (or geodetic) latitude, positive north. }
\end{aligned}
$$

$\phi_{i}=$ latitude corresponding to the meridional arc $M=Y$, i.e., foot-point latitude.
$\lambda=$ geographic (or geodetic) longitude; considered positive west of Greenwich for purposes of these formulas.
$\lambda_{0}=$ longitude of grid zone central meridian.

$$
\Delta \lambda=\lambda-\lambda_{0}
$$

$\rho=$ radius of curvature in the meridian
$=a\left(1-e^{2}\right) /\left(1-e^{2} \sin ^{2} \phi\right)^{3 / 2}$
$\nu=$ radius of curvature in the prime vertical
$=a /\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}$
$\eta^{2}=e^{\prime^{2}} \cos ^{2} \phi$
$t=\tan \phi$
$\phi_{1}, v_{1}, \eta_{1}, t_{1}$, and other subscripted quantities refer to foot-point latitude, ϕ_{1}
abs $(W)=\quad$ absolute value of the argument, W.

The following is a list of geodetic constants used in conjuction with the Clarke 1866 reference ellipsoid:

Ellipsoid $=$ Clarke 1866
Associated
Geodetic datum $=$ NAD27 (North American Datum 1927)
$a=6378206.4$
$b=6356583.8$
$c=6399902.55159$
$e^{2}=0.006768657997$
$e^{\prime^{2}}=0.006814784946$
(figure 1 goes here)

TRANSEORMATION OF GDOGRAPHIC COORDINATES
IMIO UNIVERSAL TRANSUERSE MERCATOR COORDINATES
Geographic coordinates (ϕ, λ) can be transformed into Transverse Mercator (TM) coordinates (X, Y) by applying the general formulae (CAUTION: the (X, Y) here are NOT UTM coordinates yet):

$$
\begin{align*}
& X=A(\Delta \lambda)+B(\Delta \lambda)^{3}+C(\Delta \lambda)^{5}+D(\Delta \lambda)^{7} \tag{1}\\
& Y=M+F(\Delta \lambda)^{2}+G(\Delta \lambda)^{4}+H(\Delta \lambda)^{6}+I(\Delta \lambda)^{8}
\end{align*}
$$

where $\Delta \lambda=\lambda-\lambda_{0}$ is the difference in longitude from the central meridian X_{0} in radians, A, B, C, D, F, G, H, and I are coefficients given by

$$
\begin{align*}
& B=(v / 6) \cos ^{3} \phi\left(1-t^{2}+\eta^{2}\right) \\
& C=(v / 120) \cos ^{5} \phi\left[\begin{array}{l}
\left(5-18 t^{2}+t^{4}\right)+\left(14 \eta^{2}+13 \eta^{4}+4 \eta^{6}\right) \\
-\left(58 t^{2} \eta^{2}+64 t^{2} \eta^{4}+24 t^{2} \eta^{6}\right)
\end{array}\right] \\
& D=(v / 5040) \cos ^{7} \phi\left(61-479 t^{2}+179 t^{4}-t^{6}\right) \tag{2}\\
& F=(v / 2) \sin \phi \cos \phi \\
& G=(v / 24) \sin \phi \cos ^{3} \phi\left[\left(5-t^{2}\right)+\left(9 \eta^{2}+4 \eta^{4}\right)\right] \\
& \left.H=(v / 720) \sin \phi \cos ^{5} \phi\left[\begin{array}{l}
\left(61-58 t^{2}+t^{4}\right) \\
+\left(270 \eta^{2}+445 \eta^{4}+324 \eta^{6}+88 \eta^{8}\right) \\
-\left(330 t^{2} \eta^{2}+680 t^{2} \eta^{4}+600 t^{2} \eta^{6}+192 t^{2} \eta^{8}\right.
\end{array}\right)\right]
\end{align*}
$$

and M is the length of the meridional arc from the Equator to latitude ϕ, and for the Clarke 1866 ellipsoid is given by

$$
\begin{align*}
M= & 6335034.50224227(1.005108920388050 \phi \\
& -0.005108920388050 \sin _{\phi} \cos \phi \\
& -0.000021617926721 \sin ^{3} \phi \cos \phi \\
& -0.000000113817221 \sin ^{5} \phi \cos \phi \tag{3}\\
& =0.000000000650041 \sin ^{7} \phi \cos \phi \\
& -0.000000000003872 \sin ^{9} \phi \cos \phi \\
& \left.-0.000000000000024 \sin ^{12} \phi \cos \phi\right)
\end{align*}
$$

and where in all the above formulae $\phi, \lambda, \lambda_{0}$, and $\Delta \lambda$ are expressed in radians and M in metres.

The expression for $\Delta \lambda$ requires further explanation. If the point to be transformed is WEST of the central meridian the $\Delta \lambda$ value must be made negative before using in equations (1). That is (see figure 2)

$$
\Delta \lambda=\left\{\begin{array}{lll}
\lambda-\lambda_{0}, \lambda<\lambda_{0} & \text { (point is EAST of } C M \text {) } \tag{4}\\
\lambda_{0}-\lambda, \lambda>\lambda_{0} & \text { (point is WEST of } C M \text {). }
\end{array}\right.
$$

With TM coordinates (X,Y) computed from equation (1) the UTM coordinates E,N (Easting, Northing) are obtained through the equations (see figure 2)

$$
\begin{aligned}
& E=\left\{\begin{array}{ll}
500000+a b s\left(k_{0} X\right), & \lambda<\lambda_{0} \\
500000-a b s\left(k_{0} X\right), & \lambda>\lambda_{0}
\end{array} \text { (point is EAST of } C M \text {) }\right) \\
& \mathbf{N}=\mathbf{k}_{\mathbf{o}} \mathbf{Y}
\end{aligned}
$$

The constant factor $k_{0}=0.9996$ in equations (5) is called the central scale factor and its function is to reduce the scale distortion of the UTM projection system.

TRANSFORMATION OF ONIVERSAL TRANSDERSE MERCATOR COORDINATES INTO ceocrapilc coordinates

Since the formulas for this transformation require only the $T M$ X -value coordinate we must first translate and scale our UTM easting, E into the corresponding TM X -value by

$$
\begin{equation*}
x=(E-500000) / k_{0} \tag{6}
\end{equation*}
$$

Now the TM coordinates (X, Y) can be transformed into geographic coordinates (ϕ, λ) by applying the general formulae

$$
\begin{align*}
\phi & =\phi_{1}+P \beta^{2}+Q \beta^{4}+R \beta^{6}+S \beta^{8} \\
\Delta \lambda & =\sec \phi_{i}\left(\beta+T \beta^{3}+U \beta^{5}+V \beta^{7}\right) \tag{7}
\end{align*}
$$

where β, P, Q, R, S, T, U, and V are coefficients given by

$$
\begin{align*}
& \beta=\left(x / v_{1}\right) \\
& \gamma=t_{1}+t_{1 \eta_{1}}{ }^{2} \\
& P=-(\gamma / 2) \\
& Q=(\gamma / 24)\left[\left(5+3 t_{1}{ }^{2}\right)+\left(\eta_{1}{ }^{2}-4 \eta_{1}{ }^{4}\right)-9 t_{1}{ }^{2} \eta_{1}{ }^{2}\right] \\
& \mathbf{R}=-(\gamma / 720)\left[\begin{array}{l}
\left(61+90 t_{1}{ }^{2}+45 t_{1}{ }^{4}\right) \\
+\left(46 \eta_{1}{ }^{2}-3 \eta_{1}{ }^{4}+100 \eta_{1}{ }^{6}+88 \eta_{1}{ }^{8}\right) \\
-\left(252 t_{1}{ }^{2} \eta_{1}{ }^{2}+66 t_{1}{ }^{2} \eta_{1}{ }^{4}-84 t_{1}{ }^{2} \eta_{1}{ }^{6}+192 t_{1}{ }^{2} \eta_{1}{ }^{8}\right) \\
-\left(90 t_{1}{ }^{4} n_{1}{ }^{2}-225 t_{1}{ }^{4} \eta_{1}{ }^{4}\right)
\end{array}\right] \\
& S=(\gamma / 40320)\left(1385+3633 t_{1}{ }^{2}+4095 t_{1}{ }^{4}+1575 t_{1}{ }^{6}\right) \tag{8}
\end{align*}
$$

$$
\begin{aligned}
& T=-(1 / 6)\left(1+2 t_{1}{ }^{2}+\eta_{1}^{2}\right) \\
& U=(1 / 120)\left[\begin{array}{l}
\left(5+28 t_{1}^{2}+24 t_{1}^{4}\right)+\left(6 \eta_{1}^{2}-3 \eta_{1}^{4}-4 \eta_{1}^{6}\right) \\
+\left(8 t_{1}{ }^{2} \eta_{1}{ }^{2}+4 t_{1}{ }^{2} \eta_{1}{ }^{4}+24 t_{1}{ }^{2} \eta_{1}^{6}\right)
\end{array}\right] \\
& V=-(1 / 5040)\left(61+662 t_{1}^{2}+1320 t_{1}{ }^{4}+720 t_{1}^{6}\right)
\end{aligned}
$$

and ϕ_{1} is the latitude corresponding to meridional arc $\mathrm{M}=\mathrm{Y}$. This foot-point latitude meridional is best solved for by successive approximations using the following procedure:
$\phi_{\left({ }^{1}\right)}=Y / A_{O_{0}} \mathrm{c}$ with $\mathrm{M}_{\left({ }^{1}\right)}$ computed from (3) using $\phi_{\left({ }^{1}\right)}$ as latitude argument,

$$
\phi_{(2)}=\phi_{(1)}+\left(Y-M_{(1)}\right) / A_{\circ} c \quad \text { with } M \text { computed from (3) using }
$$

$$
\phi_{(2)} \text { as latitude argument }
$$

$\phi_{\left({ }^{3}\right)}=\phi_{\left({ }^{2}\right)}+\left(Y-M_{\left({ }^{2}\right)}\right) / A_{\circ} C$
with M computed from (3) using (3)
ϕ as latitude agrgument (${ }^{3}$)

$$
\phi_{(n)}=\phi_{1} \text { when } M_{(n)}=Y \text {, }
$$

where,

$$
\begin{align*}
A_{0}= & 1+(3 / 4) e^{2}+(45 / 64) e^{4}+(175 / 256) e^{6} \\
& +(11025 / 96384) e^{8}+(43659 / 65536) e^{10} \tag{10}\\
& +(693693 / 1048576) e^{12}
\end{align*}
$$

Geographic coordinates (ϕ, λ) can now be obtained using equations (7) where (see figure 2)

$$
\lambda= \begin{cases}\lambda_{0}-\operatorname{abs}(\Delta \lambda), & x>500000 \text { (point is EAST of } C M \text {) } \tag{11}\\ \lambda_{0}+a b s(\Delta \lambda), & x<500000 \text { (point is WEST of } C M \text {). }\end{cases}
$$

Equations (7) and (12) yield geographic coordinates (ϕ, λ) in radians accurate to five decimal places of one second.

Geographic to UTM
Given: $\phi: 43-10-52.40864$
$\lambda: 80-22-56.86602$
$\lambda_{0}: 81-00-00$ (UTM zone 17)
Convert (ϕ, λ) and λ_{0} into radians,

> | ϕ | $=$ | 0.753 | 654 | 544 | 701 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0224 | | | | | |
| λ | $=$ | 1.402 | 938 | 636 | 430 |

Hence, the difference in longitude given by equation (4) is

$$
\Delta \lambda=-0.0107780576844350
$$

because λ is east of the central meridian.
Now using equations (2), (3), and (1) where the value for $e^{\prime^{2}}$ can be obtained from the list of geodetic constants given above or computed from the given equation we get

$$
\begin{aligned}
& t=0.9384460318111880 \\
& n=0.0036235731154539 \\
& v=6388338.711516329 \\
& A=4658331.288717760 \\
& B=50753.5533017645 \\
& C=-112075.8873070132 \\
& D=-30943.4593031409 \\
& F=1593867.130667236 \\
& \mathrm{G}=293232.0147725329 \\
& H=13292.8107407245 \\
& I=-11104.9624676480 \\
& M=4782637.642233285 \\
& X=-50207.8268726695 \\
& Y=4782822.800200157
\end{aligned}
$$

Using equations (5) to compute the UTM coordinates (E, N) the result is
$\mathrm{E}=450187.744$ (because the point is east of the CM)
$\mathrm{N}=4780909.671$

UTM to Geographic

Given: E : 430756.720
N : 4718544.799
λ_{0} : 81-00-00 (UTM zone 17)
Translate and scale the UTM coordinates to obtain TM coordinates (X, Y) using equation (6) and convert the central meridian into radians

$$
\begin{aligned}
& X=-69270.9883953581 \\
& Y=4720432.972188876 \\
& \lambda_{0}=1.413716694115407
\end{aligned}
$$

To compute the latitude corresponding to meridional arc $M=Y$ use equations (10),(9) and (3) where e^{2} can be obtained from the list of geodetic constants given above or computed from the given equation. Equation (9) represents an iterative or successive approximation procedure for computing the footpoint latitude. The following are the numerical values for the successive approximations for this example. The computed value for meridional arc, M converged to the value for Y after nine-iterations. Hence the corresponding value for foot-point latitude is $\phi(9)$. The values after each iteration are:

```
    A}=1.005108920378586 (constant for all iterations
\phi(1) = 0.733 829 804 470 0183
M(1) = 46554460.445817601
\phi(2) = 0.743 774855442 0517
M(2) = 4 719753.872 357474
\phi(3) = 0.743 880 427 0494506
M(3) = 4 720425.797458893
\phi(4)=0.743 88i5424197422
M(4)=4720432.896 391271
\phi(5) = 0.743 881554 203 0979
M(5) = 4 720432.971 388 110
\phi(6) = 0.743 881554 327 5834
M(5) = 4 720 432.972 180416
\phi(7) = 0.743 881554 328 8985
M(7) = 4 720432.972 188 786
```

$$
\begin{aligned}
& \phi(8)=0.743881554328 \\
& M(8)=4720 \\
& \\
& \hline
\end{aligned}
$$

Since $M(9)=Y$ the foot-point latitude is $\phi(9)$.
Now, using equation (8)

$$
\begin{aligned}
& t_{1}=0.920 \quad 232618 \quad 023 \quad 3872 \\
& \eta_{1}=0.003689 \\
& 994
\end{aligned} 2403482
$$

$$
Q=0.2892494571046944
$$

$$
R=-0.2163219105142156
$$

$$
S=0.1913821589649200
$$

$$
T=-0.4495576894647838
$$

$$
U=0.3830763096311982
$$

$$
V=-0.3979820263671559
$$

Geographic coordinates (ϕ, λ) can now be obtained using equations (7) and (11). This yields

$$
\begin{aligned}
\phi & =0.7438272554478973 \\
\Delta \lambda & =-0.014735609304117785
\end{aligned}
$$

and

$$
\lambda=1.428452303419525 \text { (because the point is west of the } C M \text {). }
$$

The above values for ϕ and λ are in radians. After conversion to degrees-minutes-seconds we have

$$
\begin{aligned}
& \phi=42-37-05.38473 \\
& \lambda=8 \uparrow-50-39.43759
\end{aligned}
$$

The above algorithms for transformations between geographic and UTM coordinates are relatively simple, straightforward and accurate. Simpler, although less accurate formulation is available, however, and the author would be happy to provide the same upon request. It is hoped, however, that the algorithms given here have been presented in such a way as to both demystify some of the mathematics involved in this computation and to present a clear, methodical procedure for performing them.

References

1. Thomas, P.D. (1968). Conformal Projections in Geodesy and Cartography. U.S. Coast and Geodetic Survey, Special Publication No. 251.
2. Schmid, E. (1971). The general term in the expansion for meridian length. The Canadian Surveyor, 25(2).
3. Blachut, T.J., Chrzanowski, A. and Saastamoinen (1979). Urban Surveying and Mapping. Springer-Verlag, New York.
4. Bomford, G. (1971). Geodesy. Third Edition. Oxford, London.
5. Snyder, J.P. (1982). Map Projections Used by the U.S. Geological Survey. Geological Survey Bulletin 1532, U.S. Department of the Interior.
6. Ontario Ministry of Natural Resources (1981). The Ontario Geographical Referencing Grid (The Universal Transverse Mercator Crid System). Ontario Ministry of Natural Resources, Surveys and Mapping Branch.

EIGURE 1

FIGURE 2

